Педагогика и образование » Методика обучения решению задач с параметрами на уроках алгебры основной школы » Роль математики, в формировании и развитии интеллектуальных качеств личности

Роль математики, в формировании и развитии интеллектуальных качеств личности

Особенности развития высших психических функций в среднем и старшем школьных возрастах, описанные в п. 1 - потенциально возможный уровень, т. е. верхняя планка (как правило) в развитии интеллектуальных процессов. Достижению этого уровня способствует изучение учеником гуманитарных и естественно-математических дисциплин. Роль математики в этом процессе исключительно велика. Психологическая наука давно пришла к выводу, что лучше всего формировать и развивать мышление в ходе решения задач. В обучении математике они являются и целью, и средством обучения и математического развития школьников. В частности, это относится и к задачам с параметрами.

Задача с параметром представляет собой целую серию однотипных задач, соответствующих всевозможным числовым значениям параметра. Добавление параметра значительно усложняет задачу, т.к. увеличивается ее размерность, появляется «глубина». Решение такой задачи требует системного подхода, целостного представления ситуации. Для решения уравнений (неравенств) с параметрами необходимо умение проводить разветвленные логические построения. При этом необходимо четко и последовательно следить за сохранением равносильности решаемых уравнений (неравенств), учитывая области определения выражений в них входящих. Использование стандартных методов при решении задач с параметрами иногда приводит к неоходимости выполнения очень громоздких вычислений, что существенно затрудняет решение. Такая ситуация, как правило, способствует началу творческих поисков других путей решений, их исследования, направленное на нахождение наиболее рационального, наиболее «красивого» способа решения. Под исследованием в науке понимается изучение какого-либо объекта с целью выявления закономерностей его возникновения, развития, преобразования. В процессе исследования синтезируются имеющиеся знания, накопленный опыт, а также методы и способы изучения объектов.

Из вышесказанного можно сделать вывод, что решение задач с параметрами развивает системное, логическое мышление. Являясь прекрасным материалом для исследовательской работы, решение уравнений (неравенств) с параметрами развивает таке умения как наблюдение, сравнение, обобщение и др.; учит творчески мыслить, способствует развитию гибкости мыслительного процесса и, что очень важно, развивает теоретическое мышление.

Еще по теме:

Значение театрализованной деятельности в развитии речи детей среднего дошкольного возраста
Сочетание музыкальной и театральной деятельности позволяет стимулировать детей к образному и свободному восприятию окружающего мира (людей, культурных ценностей, природы), которое, развиваясь параллельно с традиционным рациональным восприятием, расширяет и обогащает его. Ребенок – дошкольник учится ...

Диагностическое направление
Диагностическое направление работы включает в себя первичное обследование, а также систематические этапные наблюдения за динамикой и коррекцией психического развития ребенка. К настоящему времени разработан комплекс методик для оценки психологической готовности детей с ЗПР к обучению в школе. Описа ...

Особенности восприятия детьми дошкольного возраста пространственного расположения предметов от себя и от объектов
Этапы пространственной ориентации на себе, от себя и от объектов не сменяют друг друга, а сосуществуют, вступая в сложные диалектические взаимоотношения. Выше уже указывалось, что ориентировка на себе не только определенная ступень, но и непременное условие и при ориентировке в расположении предмет ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2024 - All Rights Reserved 0.0346