В третью группу входят наглядно-графические приемы. Большинство этих приемов используют в качестве основы координатную прямую либо координатную плоскость.
Использование координатной прямой позволяет решать некоторые неравенства и системы неравенств с одним неизвестным, а также неравенства с модулями. Например, прием решения систем линейных неравенств с одним неизвестным состоит в том, что на координатную прямую наносятся множества решений каждого неравенства, а потом выделяется их общая часть. Решение уравнений и неравенств с модулями связывается с геометрической интерпретацией модуля разности чисел.
Использование координатной плоскости позволяет применить графические методы к решению и исследованию неравенств и их систем как с одним, так и с двумя неизвестными. Графические приемы эффективно применяются для изображения результатов исследования там, где чисто аналитическая запись громоздка. Характерным примером служит схема, на которой приведены различные случаи решения неравенства ax²+bx+c>0, помещенная на рис.3. В результате определенной тренировки учащиеся привыкают пользоваться такой схемой, а затем ее мысленным образом.
Педагогическое взаимодействие как условие воспитания школьников
Гуманистическая технология педагогического взаимодействия признает общение важнейшим условием и средством развития личности. Общение не просто ряд последовательных действий (деятельности) обобщающихся субъектов. Любой акт непосредственного общения - это воздействие человека на человека, а именно их ...
Сущность проблемного обучения
Проблемное обучение это не абсолютно новое педагогическое явление. Элементы проблемного обучения можно увидеть в эвристических беседах Сократа, в разработках уроков для Эмилля у Ж.Ж.Руссо. Особенно близко подходил к этой идеи К.Д.Ушинский. Он, например, писал: «Лучшим способом перевода механических ...
Открытие, изобретение, рационализаторское предложение
Результаты научной и методической деятельности могут быть оформлены в виде открытия, изобретения, рационализаторского предложения на основании «Положения об открытиях, изобретениях и рационализаторских предложениях» Они засчитываются автору как публикация. Открытие согласно Положению (п. 10) - это ...
Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.