Специфика трансцендентных неравенств. При рассмотрении различных классов трансцендентных неравенств необходимо уделять достаточное внимание формированию навыка применения тождеств для преобразования данных неравенств. Особенно ярко это проявляется в тригонометрии, поэтому при изучении тригонометрических неравенств большое значение приобретают задания и системы вопросов, связанные с распознаванием применимости того или иного тождества, возможности приведения уравнения или неравенства к определенному виду.
Здесь значительные трудности связаны с тем, что некоторые тождества, используемые в преобразованиях, приводят к изменению области определения. К числу таких тождеств относятся, например, такие:
Использование этих тождеств слева направо может привести к потере корней, а справа налево - к появлению посторонних корней. Рассмотрим примеры.
Здесь учет ограничений при использовании тождества для логарифма произведения выполнен при втором переходе, в результате чего неравенство преобразовалось в систему неравенств, из которых два последних позволяют сохранить исходную область определения неизменной.
В результате выполнения аналогичных заданий можно сделать вывод: если приходится пользоваться преобразованиями, расширяющими область определения, то для сохранения равносильности необходимо дополнительно ввести ограничения, сохраняющие исходную область определения неизменной.
В данной работе мы рассмотрели методику преподавания темы "Неравенства" в начальных и старших классах средней школы.
Неравенство числовое - высказывание вида а < b или а > b, где < - отношение строгого порядка, а отношение ≤ - отношение нестрогого порядка на некотором множестве чисел.
Неравенство с переменной - высказывательная форма вида А≤ В, где А или В - высказывательная форма.
Множество значений переменной х (или нескольких переменных), при которых высказывательная форма А < В или А ≤ В истинна, называется множеством истинности этой формы или решением неравенства с переменной.
Иногда неравенство с переменной определяют менее формально, но более, может быть, доступно: два выражения, соединенные знаком неравенства ( - знаки неравенства).
Неравенство, содержащее знак > или <, называют строгим; содержащее знак ≤ или ≥, называют нестрогим. Отношения "меньше" и "больше" для чисел а и b взаимосвязаны: если а>b, то b<а; если а<b, то b>а.
К обеим частям истинного (верного) числового неравенства можно прибавлять одно и то же число, в результате получим истинное неравенство. Умножая обе части истинного числового неравенства а<b на положительное число с, получим истинное неравенство ас<bс; если умножить на одно и то же отрицательное число с и изменить знак неравенства на противоположный, то получится истинное неравенство ас>bс.
Влияние развития двигательных умений и навыков на воспитание физических
качеств
Физическая подготовленность – это уровень развития двигательных умений и навыков физических качеств. Она является важным показателем не только физического, но и общего развития ребенка. В педагогических материалах еще в 30-е годы был поднят вопрос о так называемом «моторном паспорте» ребенка. Поэто ...
Модульный принцип построения учебного плана
Учебный план является основным документом процесса обучения. Но учебный план не является только набором дисциплин, которые должны быть изучены за определенный отрезок времени. Все учебные дисциплины, входящие в план, связаны между собой, то есть в более поздних по времени изучения дисциплинах испол ...
Доклад Комитета Диринга: общий взгляд на высшую школу в настоящем и будущем
Весьма важное место в докладе занимает определение желательного для высшей школы состояния в будущем, поскольку именно к реализации этого направлены все рекомендации, которые в нём формулируются. Этому вопросу посвящена первая глава доклада под названием “Взгляд на двадцать лет вперёд: общество, ко ...
Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.