Педагогика и образование » Диалектика развития понятия функции в школьном курсе математики » Возникновение и применение идеи бесконечности в древнегреческой математике

Возникновение и применение идеи бесконечности в древнегреческой математике

Страница 2

Изложим вкратце суть евдоксовой общей теории отношений (величин), содержащейся в V книге «Начал» Евклида (конец IV – III в. до н. э.). Величины здесь изображены отрезками, причем предполагается, что для любой пары величин найдется соответствующая пара отрезков а, b так, что отношение величин будет равно отношению отрезков а:b. В самом начале V книги вводится так называемая аксиома Архимеда, которую правильнее было бы называть аксиомой Евдокса (около 408 - около 355 до н. э.), или аксиомой Евдокса — Архимеда. Две однородные величины могут находиться в математическом отношении, только если на них распространяется эта аксиома которая является одной из аксиом непрерывности.

Равенство отношений определяется следующим образом: величины А, В имеют то же отношение, что и величины С, D, если для любой пары натуральных чисел тип выполняется какое-либо из следующих трех условий:

тА<пВ и тС<пD;

тА = пВ и тС = пD;

тА>пВ и тC>пD.

Современной операции умножения вещественных чисел у Евдокса соответствует составление отношений. «Составить» пару отношений А:В и В:С — значит найти отношение А:С, «составленное». Чтобы составить произвольные два отношения а:b и с:d, требуется предварительно найти отношение b:x, равное с:d, что осуществляется путем построения к любым трем отрезкам с, d, b четвертого пропорционального отрезка x. В V книге устанавливаются основные свойства отношений и их составления. Вышеприведенное определение отношений было, вероятно, подсказано Евдоксу как свойствами отношений соизмеримых величин, так и рассмотрением процесса измерения непрерывных геометрических величин. Целесообразность этого определения, конечно, можно проверить на разных примерах. О том, что некоторые математики неправильно его понимали, свидетельствует случай с французским ученым XVI в. П. Рамусом. Последний, возражавший против определения равенства отношений Евдокса, ссылался на следующий пример. Для чисел 4; 3 и 5; 4, т=6, п=9 имеет место неравенство

6·4<9·3 и 6·5<9·4,

но вместе с этим отношение 4:3 не равно отношению 5:4. Рамус не учел, что речь идет не об определенной одной паре или о конечном числе пар натуральных чисел т, п, а о произвольной паре. Достаточно в данном случае взять т=6, п=8, чтобы получить:

6·4=8·3,

в то время как 6·5<8·4.

Именно тот факт, что равенство отношений определяется Евдоксом с помощью бесконечного множества неравенств типа 1) или 3), вызывал много трудностей для понимания его теории, предвосхитившей теорию вещественных чисел Дедекинда (1831-1916). И метод исчерпывания Евдокса основывается на идее неограниченного приближения к некоторой величине с помощью последовательности неограниченного числа значений других величин и на основе безграничного деления любой величины на части, меньшие любых наперед заданных величин, т. е. в конечном итоге на идее потенциальной бесконечности, на которой базируется и метод пределов, которым пользуемся и мы. С помощью метода исчерпывания Евдокс строго доказал, что объем пирамиды равен 1/3 объема призмы с тем же основанием и высотой и другие предложения.

В итоге можно сказать, что идея бесконечности возникла и применялась в древнегреческой математике главным образом в связи с развитием арифметики и теории чисел (натуральный ряд, бесконечное множество простых чисел и др.), с открытием несоизмеримости и с вопросами измерения и исследования свойств геометрических фигур, рассматриваемых как непрерывные.

Страницы: 1 2 3

Еще по теме:

Требования к представлению информации на слайде
Работа с визуальной информацией, подаваемой с экрана, имеет свои особенности, может вызвать утомление, снижение остроты зрения. Особенно трудоемкой для человеческого зрения является работа с текстами. Вследствие этого при создании слайдов необходимо учесть целый ряд требований. 1. Содержание информ ...

Интегрированный урок как способ активизации познавательной деятельности учащихся
Познавательная деятельность ребёнка возможна лишь там, где созданы определённые условия для её развития. И в этом огромную роль играет интеграция учебного процесса. Интегрированный урок отличается от традиционного использованием межпредметных связей, которые предусматривают лишь эпизодическое включ ...

Развитие воображения ребенка-школьника с сохранным слухом и недостатками слуха
Одной из важнейших задач психолого-педагогической работы является всестороннее изучение личности ребенка. Как отмечал К.Д. Ушинский «Если педагогика хочет воспитать человека во всех отношениях, то она должна прежде узнать его тоже во всех отношениях». Отечественными психологами Л.С. Выготским, В.В. ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2025 - All Rights Reserved 0.026