Педагогика и образование » Диалектика развития понятия функции в школьном курсе математики » Изучение основных элементарных функций в школьном курсе математики

Изучение основных элементарных функций в школьном курсе математики

Страница 7

После чего формулируются свойства функции y=tgx.

В учебнике Колмогорова все тригонометрические функции вводятся в одном параграфе, который начинается с основных тригонометрических определений. Данные определения не являются новыми для учеников - это повторение материала 9 класса. После этого происходит построение графика функции y=sinx по точкам с использованием свойств периодичности и единичной окружности.

По графику демонстрируются свойства данной функции: ее область определения, область значения, наибольшее и наименьшее значения, нули функции, промежутки постоянных знаков функции. Аналогично рассматриваются свойства функции y=cosx и y=tgx и на графиках этих функций демонстрируются их свойства.

В 9 классе в учебнике Мордковича предлагаются элементы теории тригонометрических функций. Эта глава рассматривается, как дополнительный материал. Весь этот материал повторен и расширен в курсе алгебры и начала анализа в 10-11 классе.

В начале 10 класса учащиеся подробно изучают данный материал. На изучение данного материала отводится 15 параграфов, а по времени – 18 часов.

В §1 и в §2 учащиеся знакомятся с числовой окружностью и с определением тригонометрических функций. Автор выделяет числовую окружность в качестве самостоятельного объекта изучения. Школьникам напоминается материал о вычислении длин дуг окружностей.

Числовая окружность на плоскости рассматривается в §3.

Для изучения числовой окружности автор предлагает игровые моменты.

Изучение самих функций начинается только с 9 параграфа. Перед этим вводятся определения синуса, косинуса , тангенса и котангенса. Первой функцией предлагается y=sinx. Параграф начинается с формулирования свойств функции. После чего предлагается построить график данной функции на отрезке [0; p]. Затем добавляют к построенному графику симметричную ему относительно начала координат линию. Получили график на отрезке [-p; p]. Далее предлагается построить график функции на отрезке [p; 3p]. В результате получили то же самое, что и на отрезке [-p; p].

В следующем параграфе предлагается к рассмотрению функцию y=cosx. Ее график получается из графика функции y=sinx сдвигом на в лево. После чего рассматриваются свойства функции.

В §15 учащимся предлагается функция y=tgx и y=сtgx. Отмечаются их свойства. Графики строятся так же как в учебниках Алимова.

Страницы: 2 3 4 5 6 7 

Еще по теме:

Специфика логопедической работы с дошкольниками с нарушением зрения
Логопеду, работающему с детьми с нарушениями зрения, необходимо помнить, что при определенной остроте зрения рекомендовано предъявлять картинные пособия конкретного размера. Ниже представлена таблица, в которой в соответствии со зрением подбирается размер пособия. Таблица Острота зрения Размер посо ...

Методика использования учебных элементов при освоении отдельных тем основного курса информатики
Учебные элементы в настоящее время используются в средней школе крайне редко, в частности, потому что создание учебного элемента занимает определенное дополнительное время. Более того, многие учителя предпочитают проверенную классическую систему преподавания, не зная о преимуществах применения учеб ...

Развитие ребенка в дошкольный период
Дошкольный возраст — важнейший этап в жизни и воспитании детей, на котором закладывается база для дальнейшего полноценного развития ребенка. Это время интенсивного роста, развития головного мозга и всех основных функций организма. На этом этапе в ходе воспитания ребенка закладываются основные особе ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2024 - All Rights Reserved 0.0303