Известно, что методы высшей математики позволяют строить любой график. Однако знаний тех элементов высшей математики, которые даются в средней школе, для этой цели недостаточно. С другой стороны, большое количество графиков, иногда весьма интересных может быть построено средствами исключительно элементарной математики. Наиболее трудные из этих графиков требуют для своего построения хорошего знания многих разделов элементарной математики, а подчас и остроумного применения этих знаний. Построение графиков средствами элементарной математики может служить материалом для закрепления и усовершенствования учениками и абитуриентами своих знаний по многим важным разделам элементарной математики.
Разобьем этот прием на примере построения графика функции
График этой функции можно построить, пользуясь общими приемами:
область существования: (-¥;¥), т.е. вся числовая ось;
область изменения функции – полуоткрытый интервал 1£у<¥;
функция четная;
при х=0 у=1, т.е. кривая пересекает ось у-ов в точке (0;1); в этой точке функция имеет минимум, так как х2 =0, откуда у³1;
Рис.13. Рис.14.
контрольная точка: при х=2 у=4+1=5; точка (2; 5).
По этим данным график функции построен на рис. 13.
Тот же график можно построить проще, воспользовавшись уже известным нам графиком функции у=х2. Для этого наносим штриховой линией график функции у=х2 (рис. 14), назовем его исходным графиком.
Сравнивая графики функций у=х2+1 и у=х2, видим, что ординаты у графика заданной функции на 1 больше ординат исходного графика. Следовательно, исходный график надо перенести на 1 вверх, как это и сделано на рисунке 14.
График функции у=х2+1 можно построить еще проще, если воспользоваться тем же исходным графиком (y=x2), но вместо перенесения всей кривой вверх на 1 перенести ось х-ов на ту же 1 вниз, как показано на рисунке 15. Тем самым относительно новой оси х-ов все ординаты
|
|
кривой у=х2 увеличиваются на 1 и получается график заданной функции у=х2+1.
Следовательно, график функции y=f(x)+b, где f(x) - простейшая функция, график которой нам известен, можно построить следующим простейшим приемом (рис. 15).
Строится известный нам график функции у=f(х), причем горизонтальная ось вычерчивается штриховой линией. Затем она сдвигается на (-b). Это и есть истинная ось х-ов; первоначальную же горизонтальную ось, нанесенную штриховой линией, можно стереть.
Например, для построения графика функции у=f(x)+3 горизонтальная штриховая ось графика функции у=f(x) сдвигается на 3 единицы вниз, т. е. на (-3); для построения графика функции y=f(x)-3 горизонтальная штриховая ось сдвигается на (+3), т. е. на 3 единицы вверх.
Разберем этот прием на примере построения графика функции
y=(x+1)2.
Общий метод построения графика:
область существования — вся числовая ось;
область изменения функции - полуоткрытый интервал 0£у<¥;
функция не обладает свойствами четности и нечетности;
при у=0 (х+1)2=0, или х+1=0, откуда х=-1, т. е. кривая пересекает ось х-ов в точке (-1; 0);
при х=0 у=1, т. е. кривая пересекает ось у-ов в точке (0; 1);
контрольные точки:
x=2; у=(2+1)2=9; точка (2; 9);
x=-3; у=(-3+1)2=4; точка (-3; 4).
|
По этим данным график функции построен на рисунке 17.
|
Отметки и оценки в начальной школе
Начальная школа – это первая ступень во взрослую жизнь. Каждый ребенок еще с детского садика говорит о школе. Многие с нетерпением ждут первого сентября. А как же иначе, новые впечатления, новые друзья, а также столько интересной информации можно узнать. В российских средних общеобразовательных шко ...
Методы и формы социально-педагогической работы с безнадзорными и
беспризорными детьми
Начало работы должно быть построено на сборе всей доступной информации о детях данной категории. Любая существующая информация будет неоценимой. Может потребоваться информация не только о детях, но и о работающих с ними Анализ этой информации был очень полезным в начале работы. Следующий этап- непо ...
Особенности методики изучения темы трудности и способы их устранения
В связи с тем, что тема логически построена правильно и содержит материал с которым учащиеся сталкиваются в жизни, она не вызывает большой сложности. Особенности методов преподавания данной темы определяется задачами обучения, учетом возрастных, психических и физиологических способностей учащихся, ...
Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.