a = 1 ⇒x1 ≥ 1;
a > 1 ⇒x = 1.
Приложение. Список задач с параметрами, рекомендуемых для проведения дополнительных занятий по данной теме
Ниже предлагаются задачи с параметрами разного уровня сложности, для слабых и сильных учеников. Задачи с повышенной сложностью будут отмечены значком *.
Линейные уравнения
1. Решить уравнение при всех значениях параметра.
c - 2 = x + 2 (Какое значение будет иметь корень уравнения при ?
Ответ: х = с - 4,
⇒ .
2. Решить уравнение при всех значениях параметра.
x + 4 = a - 3 (Выяснить, при каких значениях параметра а корень уравнения равен -7)
Ответ: х = а - 7, х ≠ -7 ⇒ а ≠ 0.
3. Решить уравнение при всех значениях параметра.
b - 8 + 2x = 2b (Выяснить, при каких значениях параметра корень уравнения не равен 4,5)
Ответ:
4. При каких значениях параметра а уравнение (а2 - 6а + 5) = а - 1 имеет
1) один корень;
2) ни одного корня;
3) бесконечно много корней?
Ответ: 1) а ≠ 1; а ≠ 5;
2) а = 5;
3) а = 1.
Решить уравнения при всех значениях параметра (№5 - 11).
5. (2 - х)а = х + 1.
Ответ: а ≠ -1 ⇒ x = (2a - 1)/(1+a).
6. (а2 - 1)х = а + 1.
Ответ: а ≠ 1 ⇒ х = 1/(а - 1).
7.
Ответ: если а = 1 ⇒ ∅;
если а ≠ 1 ⇒ х = а.
8.
Ответ: если а = -2 ⇒ ∅;
если а ≠ -2 ⇒ x = 2.
9.
Ответ: а ≠ -2 ⇒ х = (а + 8)/3.
10.
Ответ: а ≠ -2 ⇒ х = 6/(4 - а).
11*.
Ответ: если а = 0 ⇒ R\{2};
если а = 1 ⇒ R\{2};
если а ≠ 0, а ≠ 1 ⇒ ∅.
Линейные уравнения с модулем.
Решить уравнение при всех значениях параметра (№1 - 6).
1. |x + a| = 2.
Ответ:
x = -a ± 2.
2. |x + 2| = a.
Ответ:
a < 0 ⇒ ∅;
a = 0 ⇒ x = -2;
a > 0 ⇒ x = -2 ± a.
3. |x + a| = 2 - а.
Ответ:
a > 2 ⇒ ∅;
а = 2 ⇒ х = -2;
4*. |3x - c| = |x + 2|.
Ответ:
с = -6 ⇒ x = -2;
c ≠ -6 ⇒ x1 = 0,5(c + 2), x2 = 0,25(c - 2).
5*. |x + 3| - a|x - 1| = 4.
Ответ:
a ∈ (-1; 1) ⇒x1 = 1, x2 = (a + 7)/(a - 1);
a = 1 ⇒x1 ≥ 1;
a > 1 ⇒x = 1.
6*. |x - a| + |x - 2a| = 3a
Ответ:
a < 0 ⇒ ∅;
a = 0 ⇒ x = 0;
a > 0 ⇒ x1 = 3a, x2 = 0.
7. При каких значениях параметра а уравнение x + 2 = a|x - 2| имеет единственный корень? Найти это решение.
Ответ: a ∈ (-1; 1] ⇒x = (a - 2)/(a + 1).
(Возможен графический способ решения).
8. При каких значениях параметра b уравнение b|x - 3| = x + 1 имеет единственное решения? Найти это решение.
Ответ: b ∈ (-1; 1] ⇒x = (3b - 1)/(b + 1).
(Возможен графический метод решения).
9*. Выяснить, сколько решений в зависимости от параметра а имеет уравнение
| x + 2 | = ax + 1.
Ответ: а = 0,5 ⇒
a ∈ (0,5; 1] ⇒∅;
а ∈ (1; +∞] ⇒ 1.
При каких значениях параметра а уравнение | x - a | - | 2x + 2 | = 3 имеет единственное решение? Найти это решение.
Ответ: a = -4, a = 2⇒ x = -1.
11*. При каких значениях параетра а уравнение | 2x + a | + 1 = | x + 3| имеет единственное решение?
Ответ: {-8; -4}.
12*. При всех а решить уравнение | x + 3 | - a| x - 1 | = 4. Определить, при каких а оно имеет ровно два решения.
Ответ: (1; +∞) при а = 1;
[-3; 1] при а = -1;
при а ∈ (-1; 1);
{1} при а ∈ (-∞; -1) ∪ (1; + ∞).
13*. Сколько решений имеет уравнение ax = |x| в зависимости от параметра?
Ответ:
а ≠ ±1 ⇒ х = 0;
а = 1 ⇒ х ∈ [0; +∞);
a = -1 ⇒ х ∈ (-∞; 0].
Линейные неравенства
1. Сравнить 3a и -а.
Ответ:
a < 0 ⇒ 3a < -a;
a = 0 ⇒ 3a = -a;
a > 0 ⇒ 3a > -a.
Для каждого значения параметра решить неравенство (№2 - 8).
2. cx > 2.
Ответ: с < 0 ⇒ x < 2/c;
a = 0 ⇒ ∅;
c > 0 ⇒ x > 2/c.
3. cx > -3.
Ответ: c < 0 ⇒ x < -3/c;
c = 0 ⇒ x ∈ R;
c > 0 ⇒ x > -3/c.
4. cx ≤ 2.
Ответ: c < 0 ⇒ x ≥ 2/c;
c = 0 ⇒ x ∈ R;
c > 0 ⇒ x ≤ 2/c.
5. (c - 2)x ≤ -5.
Ответ: с < 2 ⇒ x ≥ 5/(2 - c);
c = 2 ⇒ ∅;
c > 2 ⇒ x ≤ 5/(2 - c).
6. 3(2a - x) < ax + 1.
Психологические особенности
детей дошкольного возраста
Дошкольный возраст представляет собой этап психического развития с момента осознания себя членом человеческого общества (примерно с 2-3 лет) до момента систематического обучения (6-7 лет). Выделяют три периода дошкольного возраста: младший дошкольный возраст (3-4 года), средний (4-5 лет) старший (5 ...
Цикловое планирование занятий
Профессия учителя, педагога – творческая профессия. Справедливо считается, что она находится на стыке науки и искусства. От педагога требуется совершенное владение не только предметом, который он преподает, но и педагогикой, современной дидактикой, педагогической психологией, методикой преподавания ...
Методика использования учебных элементов при освоении отдельных тем основного
курса информатики
Учебные элементы в настоящее время используются в средней школе крайне редко, в частности, потому что создание учебного элемента занимает определенное дополнительное время. Более того, многие учителя предпочитают проверенную классическую систему преподавания, не зная о преимуществах применения учеб ...
Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.