Задачи, в которых параметр является левой частью уравнения. (Учебник А.Г. Мордковича)
№ 518. При каком значении p уравнение x2 - 2x + 1 = p имеет один корень?
№ 522. При каких значениях p уравнение x2 + 6x + 8 = p:
а) не имеет корней;
б) имеет один корень;
в) имеет два корня?
Задания, приводящие к формированию умения отыскания множества допустимых значений параметра. (Учебник А.Г. Мордковича)
№ 543. При каких значениях а имеет смысл выражение:
а) ; б) ;в) ;г) ?
№ 793. При каких значениях параметра p уравнение
(2p - 3) x2 + (3p - 6)x + p2 - 9 = 0 является:
а) приведенным квадратным уравнением;
б) неполным неприведенным квадратным уравнением;
в) неполным приведенным квадратным уравнением;
г) линейным уравнением?
Решение квадратных уравнений с параметром с вычислением дискриминанта. (Учебник А.Г. Мордковича)
№ 838. Из данных уравнений укажите те, которые имеют два различных корня при любом значении параметра p:
а) x2 +px = 0;в) x2 +px + 5 = 0;
б) x2 - px - 5 = 0;д) px2 - 2 = 0.
№ 842. Докажите, что не существует такого значения параметра p, при котором уравнение x2 - px + p - 2 = 0 имело бы только один корень.
№ 953. Решите уравнение:
а) x2 - 2(a - 1)x + a2 -2a - 3 = 0;
в) x2 + 2(a + 1)x+ a2 + 2a - 8 = 0.
№ 337. (Учебник С.М. Никольского)
Известно, что x1 - корень уравнения. Определите второй корень уравнения и коэффициент a.
2x2 + 16x + a = 0, x1 = 3.
Использование теоремы Виета. (Учебник А.Г. Мордковича)
№ 791. При каких значениях параметра p сумма корней квадратного уравнения x2 + (p2 + 4p - 5)x - p = 0 равны нулю?
№ 1000. Дано уравнение x2 - (p + 1)x + (2p2 - 9p -12) = 0. Известно, что произведение его корней равно -21. Найдите значение параметра p.
№ 1360. При каких значениях параметра p квадратное уравнение
3x2 - 2px - p + 6 = 0:
а) имеет два различных корня;
б) имеет один корень;
в) не имеет корней?
Неравенство с параметрами.
№ 1366. При каких целочисленных значениях параметра p неравенство
(x - 2)(x - p) < 0 имеет три целочисленных решения?
В материале 8 класса можно отдать предпочтение квадратным уравнениям с параметрам, которые решаются с помощью теоремы Виета, и заданиям, в которых задан один из корней уравнения и необходимо найти второй корень и какой - либо неизвестный коэффициент.
9 класс
В 9 классе следует обобщить и систематизировать навыки решения уравнений и систем уравнений с параметрами, и освоить решение неравенств с параметрами.
1. Сначала можно рассмотреть задания, связанные с нахождением области определения функций, являющиеся подготовкой к работе с параметрами. Подобные задания можно взять из учебника под редакцией С.А. Теляковского. Например,
№ 11. Какова область определения функции, заданной формулой
Следующую группу заданий должны составить неравенства с параметрами, наиболее хорошо подобранные в учебнике С.М. Никольского.
2.Неравенства с дискриминантом, равным нулю.
№ 97. найдите все значения k, при каждом из которых верно неравенство:
а) x2 - 24x + k > 0 верно при всез х, кроме х = 12,
б) 64x2 + kx + 9 > 0 верно при всех х, кроме х = -3/8.
3. Неравенства второй степени с отрицательным дискриминантом.
№ 105. Укажите все значения m, при каждом из которых неравенство верно при любом значении х:
а) 2x2 - x + m > 0; б) 3x2 + 2x + m > 0.
Так как у обоих неравенств a > 0 (2 > 0 и 3 > 0), то необходимо найти D и решить неравенство D < 0 относительно m.
а) D = 1 - 8mб) D = 4 - 12m
D < 0 D < 0
1 - 8m < 0 4 - 12m < 0
m > 1/8 m > 1/3
Ответ: при всех m > 1/8 (m > 1/3) неравенство «а» («б») верно при любых значениях х.
№ 222. Решите неравенство, считая, что а - данное число:
а) ах > 0,б) ax > 1,в) ax + 1 > 3,
г) ax - 8 < 11,д) ax > x,е) ax + 1 > x.
№230*. Найдите все значения t, при которых уравнение имеет два различных корня.
а) x2 - 6x + t =0; б) (t + 3)x2 + 2(t - 1)x + t = 0.
№ 231. Найдите все значения t, при которых уравнение не имеет действительных корней:
а) x2 + 4x + 6t = 0, б) tx2 - 2(t - 2)x + t = 0.
№239. (Повышенной трудности) При каких значениях t уравнение
x2 - 2tx + t2 - 1 = 0 имеет два действительных корня:
а) отрицательных; б) положительных; в) разных знаков, причем отрицательный корень имеет большую абсолютную величину?
4. Далее, в 9 классе желательно рассмотреть один - два примера уравнения с параметром и модулем.
Например, решить уравнение при всех значениях параметра а.
|x + 3| - a|x - 1| = 4.
Ответ:
a ∈ (-1; 1) ⇒x1 = 1, x2= (a + 7)/(a - 1);
Предметно-ориентированные технологии
обучения
Технология постановки цели Центральная проблема педагогической технологии – процесс целеобразования. Она рассматривается в двух аспектах: диагностика целеобразования и объективный контроль качества усвоения учащимися учебного материала; развитие личности в целом. Способ постановки целей, который пр ...
Анализ современного состояния социальной педагогики
Социальная педагогика в своём развитии прошла огромный путь. И её современное состояние на прямую зависит от исторических корней. И мы считаем, что необходимо провести анализ современного состояния социальной педагогики. Мы выдели следующие критерии анализа современного состояния социальной педагог ...
Создание психологического
комфорта для первоклассников как фактор развития их познавательной мыслительной
деятельности
«Первоклассник - это человек, который еще хочет ходить в школу», - написала в местной газете журналистка, мама девочки-первоклассницы. Как следует организовать процесс обучения, чтобы превратить любопытство малыша в стойкий познавательный интерес школьника [24:50]? Ответ на этот вопрос ищут ученые- ...
Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.