Пример 10. Для построения графика функции y=f(х) некто составил таблицу значений аргумента и функции:
x |
-2 |
-1 |
0 |
1 |
2 |
y |
-1 |
0 |
1 |
2 |
3 |
![]() |
Рис. 5.
что график функции представляет собой прямую (показанную на рис. 5 пунктиром). Можно ли считать этот вывод надежным? Если нет дополнительных соображений, подтверждающих этот вывод, его вряд ли можно считать надежным. Простой пример иллюстрирует сказанное. Рассмотрим функцию
.
Вычисления показывают, что значения этой функции в точках -2, -1, 0, 1, 2 как раз описываются приведенной выше таблицей. Однако график этой функции вовсе не является прямой линией (он показан на рис. 6). Другим примером может служить функция y=x+1+sinpx; ее значения тоже описываются приведенной выше таблицей.
Этот пример показывает, что в «чистом» виде метод построения графика по нескольким точкам ненадежен.
![]() |
Поэтому для построения графика заданной функции, как правило, поступают следующим образом. Сначала изучают свойства данной функции, с помощью которых можно построить эскиз графика. Затем, вычисляя значения функции в нескольких точках (выбор которых зависит от установленных свойств функции), находят соответствующие точки графика. И, наконец, через построенные точки проводят кривую, используя свойства данной функции.
Некоторые (наиболее простые и часто используемые) свойства функций, применяемые для нахождения эскиза графика, мы рассмотрим в §4, а сейчас разберем некоторые часто применяемые способы построения графиков.
Основные свойства функции п.1.5.1. ограниченность
Теперь мы должны ознакомиться со свойством функций, которое является интегральным, т. е. может быть определено сразу для любого множества значений независимой переменной, не нуждаясь в предварительном определении для отдельных её значений (в отдельных точках). Функция у=f(х) называется ограниченной на множестве M, если все значения, принимаемые ею на этом множестве, принадлежат некоторому отрезку; очевидно, вместо этого мы можем предъявить и совершенно равносильное требование: существует такое положительное число с, что f(х)<с для всех хÎМ. Более детально, мы называем функцию у ограниченной сверху (снизу) на М, если существует такое число с, что f(х)<с (f(х)>с) для всех хÎМ. Функция просто ограниченная должна быть для этого, очевидно, ограничена как сверху, так и снизу.
Виды дидактических игр
Много игр с готовым содержанием и правилами создается в настоящее время педагогами. Среди дидактических игр различают игры в собственном смысле слова и игры-занятия, игры-упражнения. Для дидактической игры характерно наличие игрового замысла или игровой задачи. Существенным элементом дидактической ...
Исследование особенностей межличностного взаимодействия в подростковом
возрасте как составляющей педагогического взаимодействия
Педагогическое исследование проводилось на базе 15-той школы г. Канска, в 9 «в» классе. В исследовании принимали участие двадцать три человека. Цель исследования заключалась в изучении особенностей межличностного взаимодействия подростков как составляющей педагогического взаимодействия. В исследова ...
Возможности использования элементов программированного обучения в реализации
содержания курса информатики в основной школе
Как уже говорилось, использование элементов программированного обучения на уроках информатики предназначено для реализации практических целей, указанных в "Стандарте основного общего образования по информатике и информационным технологиям" и в "Примерной программе основного общего об ...
Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.