Педагогика и образование » Диалектика развития понятия функции в школьном курсе математики » График функции

График функции

Страница 6

Из всего вышесказанного следует, что точки экстремума функции находятся среди критических точек, и, однако, не всякая критическая точка является точкой экстремума. Поэтому, чтобы найти экстремум функции, нужно найти все критические точки функции, а затем каждую из этих точек исследовать отдельно на максимум и минимум. Для этого служит следующая теорема.

Теорема. (Достаточное условие существования экстремума.) Пусть функция непрерывна на некотором интервале, содержащем критическую точку x0, и дифференцируема во всех точках этого интервала (кроме самой точки x0). Если при переходе слева направо через эту точку производная меняет знак с плюса на минус, то в точке x=x0 функция имеет максимум. Если же при переходе через x0 слева направо производная меняет знак с минуса на плюс, то функция имеет в этой точке минимум.

Таким образом, если

f '(x)>0 при x<x0 и f '(x)<0 при x> x0, то x0 – точка максимума;

f '(x)<0 при x<x0 и f '(x)>0 при x> x0, то x0 – точка минимума.

Доказательство. Предположим сначала, что при переходе через x0 производная меняет знак с плюса на минус, т.е. при всех x, близких к точке x0 f '(x)>0 для x< x0, f '(x)<0 для x> x0. Применим теорему Лагранжа к разности f(x)-f(x0) = f '(c)(x-x0), где c лежит между x и x0.

Пусть x <x0. Тогда c<x0 и f '(c)>0. Поэтому f '(c)(x-x0)<0 и, следовательно,

f(x) - f(x0)<0,т.е. f(x)< f(x0).

Пусть x > x0. Тогда c> x0 и f '(c)<0. Значит f '(c)(x- x0)<0. Поэтому f(x) - f(x0)<0, т.е. f(x) < f(x0).

Таким образом, для всех значений x достаточно близких к x0 f(x)<f(x0). А это значит, что в точке x0 функция имеет максимум.

Аналогично доказывается вторая часть теоремы о минимуме.

Проиллюстрируем смысл этой теоремы на рисунке. Пусть f '(x1)=0 и для любых x, достаточно близких к x1, выполняются неравенства

f '(x)<0 при x< x1, f '(x)>0 при x> x1.

Тогда слева от точки x1 функция возрастает, а справа убывает, следовательно, при x=x1 функция переходит от возрастания к убыванию, то есть имеет максимум.

Аналогично можно рассматривать точки x2 и x3.

Правило исследования функции y=f(x) на экстремум

Найти область определения функции f(x).

Найти первую производную функции f '(x).

Определить критические точки, для этого:

найти действительные корни уравнения f '(x)=0;

найти все значения x при которых производная f '(x) не существует.

Определить знак производной слева и справа от критической точки. Так как знак производной остается постоянным между двумя критическими точками, то достаточно определить знак производной в какой-либо одной точке слева и в одной точке справа от критической точки.

Страницы: 1 2 3 4 5 6 

Еще по теме:

Проблемное обучение в профессионально-техническом образовании
Проблемное обучение — это целостная система, в основе которой лежит идея разрешения проблем. Проблемное обучение основано на получении новых знаний обучающихся посредством разрешения проблемных ситуаций как практического, так и теоретико-познавательного характера. Проблемная ситуация возникает, тог ...

Разбивка задач с параметрами по темам в действующих учебниках для средней школы
Исходя из возрастных особенностей учащихся, все задания с параметрами в 7 классе носят пропедевтический характер. Должны встречаться задания с параметрами на решение линейных уравнений, систем линейных уравнений, на выражение одной переменной через другую (в уравнениях с двумя переменными). Учащиес ...

Применение методов производственного обучения на занятиях по вождению автомобиля
При подготовки водителей находят применение все перечисленные методы производственного обучения. В том числе: устное изложение материала (рассказ, объяснение), беседа, показ (демонстрация, наблюдение). Упражнения (с обучающими машинами, лабораторно-практические и практические) Каждое занятие по вож ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2024 - All Rights Reserved 0.0106