Приемы сопоставления совокупностей предметов. Сравнивая совокупности предметов (выявляя отношения равенства и неравенства), дети осваивают способы практического сопоставления их элементов: наложение, приложение, раскладывание предметов 2 совокупностей парами, использование эквивалентов для сравнения 2 совокупностей, наконец, соединение предметов 2 совокупностей стрелочками. Например, педагог рисует на доске 6 кружков, а справа — 5 овалов и спрашивает: «Каких фигур больше (меньше) и почему? Как проверить? А если не считать?» Кому-либо из детей предлагает каждый кружок соединить стрелочкой с овалом. Выясняет, что 1 кружок оказался лишним, значит, их больше, чем других фигур, 1 овала не хватило, значит, их меньше, чем кружков. «Что надо сделать, чтобы фигур стало поровну?» И т. д. Детям предлагают самим нарисовать указанное число фигур 2 видов и разными способами сравнить их количество. При сравнении численностей множеств каждый раз устанавливают, каких предметов больше и каких меньше, так как важно, чтобы отношения «больше» и «меньше» постоянно выступали в связи друг с другом (если в одном ряду 1 лишний предмет, то в другом — соответственно 1 не хватает). Уравнивание производят всегда 2 способами: либо убирают предмет из большей группы, либо добавляют в меньшую группу.
Широко используют приемы, позволяющие подчеркнуть значение способов практического сопоставления элементов совокупностей для выявления количественных отношений. Например, воспитатель ставит 7 елочек. Дети их считают. Педагог предлагает им закрыть глаза. Под каждой елочкой ставит 1 грибок, а затем просит детей открыть глаза и, не считая грибки, сказать, сколько их. Ребята объясняют, как они догадались, что грибков 7. Можно давать аналогичные задания, но помещать во вторую группу на 1 предмет больше или меньше.
Наконец, предметы второй группы могут вообще не предъявлять. Например, педагог рассказывает: «Вечером в цирке выступает укротитель с группой дрессированных тигров, рабочие приготовили для каждого тигра по 1 тумбе (ставит кубы). Сколько тигров будет участвовать в представлении?»
Характер использования способов сопоставления постепенно меняют. Вначале они помогают в наглядной форме выявить количественные отношения, показать значение чисел и раскрыть связи и отношения, существующие между ними. Позднее, когда средством установления количественных отношений («поровну», «больше», «меньше») все более становится счет и сравнение чисел, способы практического сопоставления используют как средство проверки, доказательства установленных отношений.
Важно, чтобы дети научились самостоятельно прибегать к способам практического сопоставления групп предметов, доказывая правильность своих суждений о связях и отношениях между смежными числами. Например, ребенок говорит: «7 больше 6 на 1, а 6 меньше 7 на 1. Чтобы, это проверить, возьмем кубики и кирпичики». Он расставляет игрушки в 2 ряда, наглядно показывает и разъясняет: «Кубиков больше, 1 лишний, а кирпичиков меньше, только 6, 1 не хватает. Значит, 7 больше чем 6, на 1, а 6 меньше, чем 7, на 1».
Равенство и неравенство численностей множеств. Дети долж ны убедиться в том, что любые совокупности, содержащие одно и то же количество элементов, обозначаются одним и тем же числом. Упражнения в установлении равенства между численностями совокупностей разных либо однородных предметов, отличающихся качественными признаками, выполняют по-разному.
Дети должны понять, что любых предметов может быть поровну: и по 3, и по 4, и по 5, и по 6. Полезны упражнения, требующие опосредствованного уравнивания числа элементов 2—3 совокупностей, когда детям предлагают сразу принести недостающее количество предметов, например столько флажков и барабанов, чтобы всем пионерам хватило, столько лент, чтобы можно, было завязать банты всем мишкам. Для усвоения количественных отношений наряду с упражнениями в установлении равенства численностей множеств используют упражнения и в нарушении равенства, например: «Сделай так, чтобы треугольников стало больше, чем квадратов. Докажи, что их стало больше. Что нужно сделать, чтобы кукол стало меньше, чем мишек? Сколько их будет? Почему?»
Особенности воспитания в родительских и опекунских семьях
умственно отсталых детей
Основным значимым элементом, взятым из внешней среды ребенком, является мать или заменяющий её человек. В большинстве родители, переживая кризис, связанный с рождением неполноценного ребенка эмоционально отвергают его, проявляют нетерпение и раздражение в общении с ребенком, нарушая, таким образом, ...
Система профессионального образования
Профессиональное образование осуществляется через специальные школы и курсы. В государственную систему образования низшее профессиональное образование было включено в 1880 году, когда был издан закон о ремесленных школах. Большое значение для развития профессионального образования во Франции имел з ...
Тематический блок «Информация и ее кодирование»
Повторение методов решения задач по теме. Решение тренировочных задач на измерение количества информации (вероятностный подход), кодирование текстовой информации и измерение ее информационного объема, кодирование графической информации и измерение ее информационного объема, кодирование звуковой инф ...
Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.