Вспомним общее определение функции. Предположим, что E(f)=Y и соотношение, осуществляемое функцией f, является взаимно однозначным, то есть каждому соответствует единственный. В этом случае обратное соотношение между Y и X также является функцией с областью определения Y и множеством значений X. Эта функция называется обратной к функции f и обозначается f –1. Отметим, что D(f)=E(f –1)=X; E(f)=D(f –1)=Y.
x1 y1
x2 y2
x3 y3
Рис. 1
Итак, функция имеет обратную, если она осуществляет взаимно однозначное соответствие между D(f) и E(f).
Функция, ставящая в соответствие каждому ученику класса его год рождения, вряд ли имеет обратную, так как в классе, как правило, всегда есть ученики, родившиеся в одном и том же году. Обратная функция существует, если все ученики имеют различные года рождения. Это может быть, например, в том случае, когда в классе всего 3 ученика, один из которых родился в 85, 86, 87 гг. Для городских школ это невозможно.
Вернемся к числовым функциям. Функция y=x3 осуществляет взаимно однозначное соответствие между областью определения D(f)=R и множеством значений E(f)=R. Поэтому существует обратная функция f –1 с областью определения D(f –1)=R и множеством значений E(f –1)=R. Для явной записи обратной функции решим уравнение. Получим . В этой записи аргумент обратной функции обозначен через y, значение функции – через x. Мы привыкли к другой записи, поэтому переобозначим х и y, получим явную запись обратной функции в виде . Графики исходной функции y=f(x) и обратной функции y=f–1(x) симметричны относительно прямой y=x – биссектрисы 1-го и 3-го координатных углов.
Функция y=x2 не имеет обратной функции на всей области определения D(f)=R, так как не существует взаимно однозначного соответствия между D(f) и E(f)=. Но если ограничить область определения этой функции множеством D(f)= , то в этом случае соответствие между D(f) и E(f)= = будет взаимно однозначным, и существует обратная функция f –1 c областью определения D(f –1)= и множеством значений E(f –1)= . Для записи обратной функции решим уравнение y=x2 при условии х≥0. Получим (арифметическое значение корня), то есть обратная функция задается формулой.
Соотношение x=sin y позволяет с помощью таблиц найти как x по данной величине y, так и y по данной величине x (не превышающей единицы по абсолютной величине). Таким образом, можно считать не только синус функцией угла, но и угол функцией синуса. Этот факт находит внешнее выражение в записи y= (arcsin читается «арксинус»). Например, вместо1/2=sin 30° можно написать 30°=arcsin (1/2). Обычно при второй записи угол выражается в радианной, а не в градусной мере, так что пишут π/6= arcsin (1/2).
Хотя эта запись представляет лишь «пересказ» записи 1/2=sin π/6, но учащимся она на первых порах доставляет затруднения. Между тем учащийся не видит трудности, когда наряду с соотношением 23 =8 пишет 2=. Это происходит потому, что извлечение корня совершается по одним правилам, а возведение в степень по другим, и учащийся привыкает видеть здесь 2 разных действия. Нахождение же синуса по углу и угла по синусу совершаются по одним и тем же таблицам, в которых к тому же выделено название «синус», а «арксинус» не упоминается. Поэтому никакого особого действия, результатом которого был бы арксинус, учащийся не усматривает; и вообще в пределах элементарной математики, введение этого понятия по существу не оправдывается. В высшей же математике арксинус часто появляется как необходимый результат некоторого действия (интегрирования), и именно здесь возникло понятие арксинуса и его обозначение.
Дезадаптация и дезадаптационные стили
Согласно определению, сформулированному В.В. Коганом, «школьная дезадаптация — психогенное заболевание или психогенное формирование личности ребенка, которое нарушает его объективный и субъективный статус в школе и семье и затрагивает учебную и внеучебную активность ученика». С этим понятием связыв ...
Цель, задачи, принципы деятельности социального педагога
коррекционной школы по формированию здорового образа жизни воспитанников
Целью деятельности социального педагога специального учреждения по формированию здорового образа жизни является помощь детям с ограниченными возможностями в процессе их здоровой социализации. Данная цель достигается через решение следующих задач: изучить развитие личности в условиях ограничения воз ...
Содержание технологического образования школьников
Анализ программы 1. Общие сведения о программе. Программа общеобразовательных учреждений (трудовое обучение) 1-4, 5-11 классы. Программа подготовлена научным коллективом «Технология». Научные руководители: Ю.Л. Хотунцев, В.Д. Симоненко. – М.: Просвещение, 2006. – 240 с. Раздел: Культура дома, техно ...
Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.