Педагогика и образование » Методика обучения решению задач с параметрами на уроках алгебры основной школы » Содержание «линии задач с параметрами» в программе математики средней школы на примере учебников А.Г. Мордковича

Содержание «линии задач с параметрами» в программе математики средней школы на примере учебников А.Г. Мордковича

Страница 4

№907. Как расположен в координатной плоскости xOy график линейной функции

y = kx + m, если известно, что:

а) k > 0, m = 0;б) k < 0, m = 0?

В данном случае приведены несколько заданий с параметрами в главе «Системы двух линейных уравнений с двумя переменными», например задания:

№ 1075. Найдите значение коэффициента а в уравнении ax + 8y = 20, если известно, что решением этого уравнения является пара чисел:

а) (2;1);б) (-3;-2).

№ 1076. Дана система уравнений ,

Известно, что пара чисел (5;6) является ее решением. Найдите значения a и b.

8 класс

В учебнике для 8 класса по теме «квадратичная функция», помещены сравнительно простые задания № 483 - № 488, связанные с графиком квадратичной функции. Например:

№ 483. Найдите значение коэффициента с, если известно, что график функции y=x2+4x+c пересекает ось ординат в точке А(0;2).

Далее следует более сложные задания с похожим содержанием (№ 498 - № 503). Например:

№ 500. При каких значениях коэффициента b и c точка А(1;-2) является вершиной параболы y=x2+bx+c?

После данной темы рассмтривается графическое решение квадратного уравнения, и даются упражнения, где параметр является правой частью уравнения (№ 518 - № 522). Например:

№ 518. При каком значении p уравнение x2-2x+1=p имеет один корень?

№ 522. При каких значениях p уравнение x2+6x+8=p:

а) не имеет корней;

б) имеет один корень;

в) имеет два корня?

Считаю, что одним из заданий с параметром может служить следующее задание, которое способствует навыку нахождения множества допустимых значений параметра (или переменной).

№ 543. При каких значениях а имеет смысл выражение:

а) ;б) ;в) -; г) ?

В главе 4 «Квадратные уравнения» понятие параметра впервые появляется в условии заданий №792-795. Например:

№ 793. При каких значениях параметра p уравнение (2p - 3)x2 + (3p - 6)x +p2 - 9 = 0 является:

а) приведенным квадратным уравнением;

б) неполным неприведенным квадратным уравнением;

в) неполным приведенным квадратным уравнением;

г) линейным уравнением?

Затем в §20 «Формулы корней квадратного уравнения» в теоретической части дается определение параметра и уравнения с параметром на примере следующего уравнения: x2 - (2p + 1)x + (p2 + p - 2) =0.

Это уравнение отличается от всех рассмотренных до этих пор квадратных уравнений тем, что в роли коэффициентов выступают не конкретные числа, а буквенные выражения и считаются уравнениями с параметрами. В данном случае параметр (буква) p входит в состав второго коэффициента и свободного члена уравнения.

Когда учащиеся решают квадратные уравнения с вычислением дискриминанта, им предлагаются упражнения 820, 821, 838 - 841. Например:

№ 838. ИЗ данных уравнений укажите те, которые имеют два различных корня при любом значении параметра p:

а) x2 + px = 0; в) x2 + px + 5 = 0;

б) x2 - px - 5 = 0г) px2 - 2 = 0.

Эти задания сопровождаются заданиями на доказательство (№ 821, 842), например:

№ 842. Докажите, что не существует такого значения параметра p, при котором уравнение x2 - px + p - 2 = 0 имело бы только один корень.

При прохождении квадратных уравнений с четным вторым коэффициентом решается упражнение:

№ 953. Решите уравнение:

а) x2 - 2(a - 1)x + a2 - 2a - 3 = 0

б) x2 + 2(a + 1)x + a2 + 2a - 8

Когда учащися знакомятся с теоремой Виета, выполняются упражнения № 971 и № 972.

Страницы: 1 2 3 4 5 6 7

Еще по теме:

Дискуссия на современном уроке
Мировоззрение может объединять людей, а может и разъединять - достаточно проанализировать историю двадцатого столетия. И в настоящее время взаимопонимание, уважение, взаимопомощь являются основой мировоззрения далеко не каждого человека, особенно молодого. Поэтому очень важно у современной молодежи ...

История дорожных знаков
Появились первые дорожные указатели практически одновременно с возникновением дорог. Для обозначения маршрута первобытные путешественники надламывали сучья и делали метки на коре деревьев, устанавливали вдоль дорог камни определённой формы. Следующим шагом стало придание придорожным сооружениям кон ...

Методы, условия, средства развития ловкости
Ловкостью называется способность быстро овладевать новыми движениями и их сочетаниями, а так же умение действовать в изменяющихся условиях правильно, быстро и находчиво. То есть ловкость зависит от пластичности и подвижности нервной системы и её умения адаптироваться к изменяющимся условим внешней ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2024 - All Rights Reserved 0.0125