С учетом методических рекомендаций, приведенных выше, и на основании учебников для школ с углубленным изучением математики были разработаны уроки по теме «Обратные тригонометрические функции».
Конспект урока по алгебре №1 (10 класс)
Урок – лекция
Тема урока:
Обратные тригонометрические функции. Арксинус и арккосинус.
Тип урока: изучение нового материала.
Методы обучения: наглядный, словесный, практический.
Средства обучения: доска, конспект лекций, задачник, методические указания.
Цели урока:
– «открыть», что такое обратные тригонометрические функции;
учить находить значения аркфункций;
познакомиться со свойствами арксинуса и арккосинуса, их графиками;
– развивать интерес к математике;
воспитывать самостоятельность и аккуратность.
Ход урока
I. Организационный момент:
– приветствие класса;
– проверить готовность класса к уроку;
– сообщить тему урока и цели.
II. Изучение нового материала.
а) Учитель, для того, чтобы заинтересовать учащихся новым материалом, подводит учащихся к изучению обратных тригонометрических функций, начиная с актуализации знаний о взаимно однозначных отображениях и существовании обратной функции (сначала на примере более простых функций).
Вспомним общее определение функции. Предположим, что E(f)=Y и соотношение, осуществляемое функцией f, является взаимно однозначным, то есть каждому соответствует единственный. В этом случае обратное соотношение между Y и X также является функцией с областью определения Y и множеством значений X. Эта функция называется обратной к функции f и обозначается f –1. Отметим, что D(f)=E(f –1)=X; E(f)=D(f –1)=Y.
x1 y1
x2 y2
x3 y3
Рис. 12
Итак, функция имеет обратную, если она осуществляет взаимно однозначное соответствие между D(f) и E(f).
Функция, ставящая в соответствие каждому ученику класса его год рождения, вряд ли имеет обратную, так как в классе, как правило, всегда есть ученики, родившиеся в одном и том же году. Обратная функция существует, если все ученики имеют различные года рождения. Это может быть, например, в том случае, когда в классе всего 3 ученика, один из которых родился в 85, 86, 87 гг. Для городских школ это невозможно.
Вернемся к числовым функциям. Функция y=x3 осуществляет взаимно однозначное соответствие между областью определения D(f)=R и множеством значений E(f)=R. Поэтому существует обратная функция f –1 с областью определения D(f –1)=R и множеством значений E(f –1)=R. Для явной записи обратной функции решим уравнение. Получим . В этой записи аргумент обратной функции обозначен через y, значение функции – через x. Мы привыкли к другой записи, поэтому переобозначим х и y, получим явную запись обратной функции в виде . Графики исходной функции y=f(x) и обратной функции y=f–1(x) симметричны относительно прямой y=x – биссектрисы 1-го и 3-го координатных углов.
Функция y=x2 не имеет обратной функции на всей области определения D(f)=R, так как не существует взаимно однозначного соответствия между D(f) и E(f)=. Но если ограничить область определения этой функции множеством D(f)= , то в этом случае соответствие между D(f) и E(f)= = будет взаимно однозначным, и существует обратная функция f –1 c областью определения D(f –1)= и множеством значений E(f –1)= . Для записи обратной функции решим уравнение y= x2 при условии х ≥ 0. Получим (арифметическое значение корня), то есть обратная функция задается формулой.
Методы диагностики познавательного развития дошкольников
Цель диагностики – проверить сформированность познавательного развития дошкольников. Методика изучения и формирования познавательных интересов - вопрос в равной степени актуальный как для исследования проблемы, так и для практики обучения и воспитания. К методам исследования познавательных интересо ...
Обучение математике в старшей группе детского сада
«Программой воспитания в детском саду» в старшей группе предусматривается значительное расширение, углубление и обобщение у детей элементарных математических представлений, дальнейшее развитие деятельности счета. Дети учатся считать до 10, не только зрительно воспринимаемые предметы, но и звуки, пр ...
Приоритетный национальный проект «Образование»: цели и задачи, проблемы и
пути их решения
Приоритетный национальный проект «Образование» явился организационной основой государственной политики РФ в области образования. Он определил стратегию приоритетного развития системы образования, меры ее реализации, предусмотрев обеспечение нормального функционирования и устойчивого развития систем ...
Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.